Comunidades no SERRA

Selecione uma comunidade para navegar por suas coleções

Submissões Recentes

Item

GA-038 Processamento Digital de Sinais - 1o. Período de 2024

(LNCC, 2024-01-02) Esquef, Paulo; COMAC

Slides e material relacionado à disciplina GA-038 Processamento Digital de Sinais, do Programa de Pós-Graduação em Modelagem Computacional do LNCC. Edição, 1o. Período de 2024. Senha: formadejordan

Item

Reference Matlab Implementation of the PATV-based Hybrid Step Location Estimator (HSLE_PATV)

(2023-07-12) Esquef, Paulo Antonio Andrade Esquef; COMAC

Matlab scripts with the reference implementation of the HSLE_PATV and related scripts to run the Performance Evaluation of the HSLE_PATV and generate Figs. 1 and 2 of the paper https://serra.lncc.br/handle/1/65. All scripts have been tested with Matlab 2012b.

Item

Enhanced Step Location in the Magnitude and Phase of an AC Signal via Polynomial Approximation Total Variation (PATV) Filtering

(IEEE, 2023-11-01) Martins, Marcelo Britto; Esquef, Paulo Antonio Andrade; Vasconcellos, Renata T. de Barros e; COMAC; 2023 IEEE 13th International Workshop on Applied Measurements for Power Systems (AMPS)

In PMU calibration, response time and delay time are measured by feeding to the PMU an AC signal with a step change in magnitude or phase. Estimating accurately the reference step location is an important task in this process. In a paper presented at the 2019 IEEE AMPS, we proposed a Hybrid Step Location Estimator (HSLE), which is based on the Hilbert's transform (HT) analysis of the AC signal to obtain the related instantaneous magnitude and phase, upon which the estimation is carried out. We found that the performance of the HSLE decreased with the SNR dB of the AC signal. To render the HSLE more robust to noise, in this paper, we propose using the so called Polynomial Approximation Total Variation (PATV) decomposition to extract a noiseless step component from the instantaneous functions. The modified estimator (HSLE_PATV) is evaluated against the HSLE. Experimental results show that, for SNR dB > 55 dB, the HSLE_PATV and the HSLE perform similarly. For SNR dB E {30,40} dB, the HSLE_PATV outperforms the HSLE, providing more accurate step location estimates, with higher confidence levels, but at a higher computational cost.

Item

Código (em Matlab) de demonstração ‘SLFKTD_Simu.m

(2022-08-26) Esquef, Paulo Antonio Andrade; COMAC

Código de simulação computacional, em matlab, sobre Filtro de Kalman em tempo discreto, utilizado na vídeo-aula 'Filtro de Kalman - Simulação em Matlab - SLVT a Tempo Discreto', do curso 'GA-032 Sistemas Lineares'.

Item

Regras PROEX_2022

(LNCC, 2022-05-11) CPG; COPGA

Ato normativo que define as regras para solicitação de auxílio financeiro com os recursos PROEX. Aprovado em 25/04/2022.