Classificação de imagens usando combinação de características topológicas e redes neurais
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
DOI
Editor
Resumo
A Análise Topológica de Dados (Topological Data Analysis - TDA) é um campo interdisciplinar que utiliza conceitos da topologia para examinar e extrair informações essenciais sobre a estrutura de dados complexos. Neste estudo, adotamos uma técnica específica da TDA conhecida como Homologia Persistente, buscando extrair informações topológicas do espaço de dados e utilizá- las como características para aprendizado profundo. O foco está no uso de combinações de características topológicas, obtidas usando técnicas de TDA, para a classificação de imagens usando redes neurais. Para isso, utilizamos banco de imagens da MNIST, composto por dígitos manuscritos de 0 a 9. No âmbito de TDA, os conceitos fundamentais de complexos e filtração são fundamentais. As classes de Homologia Persistente são calculadas, e sua evolução ao longo do processo de filtração é descrita através de Diagramas de Persistência. Técnicas de vetorização são empregadas para tornar as informações topológicas compatíveis com algoritmos de aprendizado de máquina. Arquiteturas de redes neurais, modeladas com base em redes do tipo perceptron multi-camadas (multilayer perceptron- MLP) e redes neurais convolucionais (Convolutional Neural Networks- CNN) são utilizadas para incorporar características topológicas nas estratégias de aprendizado profundo. A avaliação dos resultados obtidos mostra que a inclusão de informações topológicas pode aprimorar a acurácia das redes neurais do tipo MLP em tarefas de classificação multi-classe. O mesmo não foi constatado para as redes do tipo CNN. Contudo, é importante notar que o aprimoramento observado está associado a um aumento na complexidade computacional durante o cálculo das classes de Homologia Persistente. Uma análise detalhada dos resultados identifica casos em que as técnicas de características topológicas melhoraram a acurácia. Esse fato, juntamente com a alta dimensionalidade dos espaços motivou a aplicação de técnicas de seleção de características e análise das mesmas, permitindo a redução da dimensionalidade e aumento das taxas de reconhecimento em vários cenários.